Test Results and Certifications

Specifications of VIRUSKILLER

s of 28th of May, 2017

	Description	VK-MEDI	VK-102	VK-002	VK-Blue	HEXTIO	Remarks
	Elec. Power	AC 220V/120V	AC 220V/120V	AC 220V/120V	AC 220V/120V	DC 12V	
	Elec. Comsuption	Max 280 watt	Max 350 watt	Max 280 watt	Max 95 watt	Max 15 watt	
General	Dimension (mm)	W510 x D400 x H1,590	W320 x D320 x H1,570	W320 x D320 x H1,220	W640 x D165 x H380	W124 x D105 x H330	
General	Net Weight	54 Kg	40 Kg	34 Kg	7.5 Kg	1.2 Kg	
	Blower Type	Outrota Sirocco	Outrota Sirocco	Outrota Sirocco	Backward Tubo Fan	Sirocco	
	IAQ Sensor	Fine Dust, TVOC's, Temp.	Fine Dust, TVOC's, Temp.	Fine Dust, TVOC's, Temp.	ŧ	Fine Dust, TVOC's	
	UVC lamp	16 watt, 8 ea	6 watt, 16 ea	6 watt, 8 ea	6 watt, 8 ea	7 watt, 1 ea	
Reactor	TiO2 nano Tube Filter	About 70 ea	About 135 ea	About 70 ea	About 40 ea	10 ea	
Reactor	Filter Reflector	Chrome Coat	Chrome Coat	Chrome Coat	Chrome Coat	Chrome Coat	
	Case Reflector	Galvanize Reflector	Aluminium Reflector	Aluminium Reflector	Chrome Coated Mirror	Sheet Mirror	
	HEPA Filter	150 mm, 99.97%	50 mm, 99.97%	50 mm, 99.97%	20 mm, 85%	ŧ	
Filtration	Meduim Filter	75 mm, 85%	25 mm, 85%	25 mm, 85%	ŧ	ŧ	
riitration	Actived Carbon Filter	Honeycomb, 20 mm	Honeycomb, 20 mm	Honeycomb, 20 mm	Activated Carbon 20mm	Urethane Carbon, 10 mm	
	Pre-Filter (Net Mesh)	5 mm	5 mm	5 mm	5 mm	ŧ	
	CADR (Q)	1,069 🖾/hr	653 🚰/hr	534 🚰/hr	204 🌃/hr	ŧ	
CADR	AIR FLOW RATE (V)	1,080 🛮 /hr	660 ∰/hr	540 🌃/hr	240 🌃/hr	ŧ	
CADR	Collection Efficiency (Kŋ)	99%	99%	99%	85%	ð	
	Noize	54.5 dB Max	47.7 dB Max	46.5 dB Max	46. 1dB Max	44 dB Max	
	Formaldehyde, HCHO	0.70 🛮 / min	95%	82%	71%	65%	
	Amonia, NH3	0.15 ∰/min	79%	81%	63%	53%	
Noxious Gas	Toluene, C6H5CH	1.70 ∰/min	100%	100%	100%	96%	
Removi Rate	Nitrogen Dioxide, NO2	More than 99.5%	99.50%	99.5%	98.50%	81%	
	Acetaldehyde, CH3CHO	Not yet tested	100%	100%	88%	Not yet tested	
	Acetic Acid, CH3COOH	Not yet tested	100%	100%	100%	Not yet tested	
OzoneEmission C	oncentration	Below 0.005 µmol/mol	No Detection	No Detection	No Detection	8	
Inactivation of	Polio Virus	More than 99.99%	More than 99.99%	More than 99.99%	More than 99.99%	ŧ	
Inactivation of major airborne	Influenza Virus	More than 99.99%	More than 99.99%	More than 99.99%	More than 99.99%	8	
major airborne viruses	Adeno Virus	More than 99.99%	More than 99.99%	More than 99.99%	More than 99.99%	ŧ	
VII USES	Corona Virus	More than 99.99%	More than 99.99%	More than 99.99%	More than 99.99%	8	
	Mycobacterium tuberculosis	More than 99.99%	More than 99.99%	More than 99.99%	More than 99.99%	ð	
Removing Ability	Staphylococcus aureus	More than 99.99%	More than 99.99%	More than 99.99%	More than 99.99%	8	
for Various	Streptococcus pneumoniae	More than 99.99%	More than 99.99%	More than 99.99%	More than 99.99%	8	
Bacilluses	Escherichia coli DH 5	More than 99.99%	More than 99.99%	More than 99.99%	More than 99.99%	ŧ	
	Klebsiella pneumoniae	More than 99.99%	More than 99.99%	More than 99.99%	More than 99.99%	8	

NOTE: All the information in this document remains the Property of Radic8 Ltd and is not to be copied or unlawfully advertised. Radic8 Ltd 2017

Experiment for inactivation of major airborne viruses

Kinds of Virus		Quantity of Virus	Result of Experiment	Remarks	
Killer	Experiment 1	10 ⁶ PFU/100mℓ.	None detection (99.9999%)		
Polio Virus	Experiment 2	10 ⁶ PFU/100ml	None detection (99,9999%).		
	Experiment 3	10° PFU/100ml	None detection (99.9999%)		
	Experiment 1	10 ⁶ TCID ₅₀ /100ml	None detection (99,9999%)		
Influenza Virus	Experiment 2	10 ⁴ TCID ₅₀ /100ml	None detection (99,9999%)	Test by Institute of Medical Science &	
111.00	Experiment 3	10 ⁶ TCID ₅₀ /100ml None detection (None detection (99.9999%)	Department of Microbiolog	
W- 22	Experiment 1	10 ⁶ TCID ₅₀ /100ml	None detection (99,9999%)	(Virus Reference Laboratory	
Adeno Virus	Experiment 2	10 ⁶ TCID ₅₀ /100m [§]	None detection (99.9999%)	Designated by Environmen t Research Center)	
11144	Experiment 3	10 ⁶ TCID _{so} /100ml	None detection (99,9999%)	Thesearch centery	
Corona Virus	Experiment 1	10 ⁶ PFU/50m²	None detection (99.9999%)		
	Experiment 2	10 ⁶ PFU/50m ²	None detection (99.9999%)		
	Experiment 3	106 PFU/50ml	None detection (99.9999%)		

Cell images and test results

Description	Cell line of negative	Cell line of positive	Experiment G.1.	Experiment G.2	Experiment G.3
Polio Virus					
Influenza Virus					
Adeno Virus					
Corona Virus				《 》	

The Viruskiller technology has been extensively tested on various Bacteria, Viruses, Fungi, Mould, VOC's, Toxic Gas and Particulate Matter including Ultra Fine Dust.

Note: The test results on Airborne Pathogens are the same across the Viruskiller range as the core of the technology (the sterilisation chamber) was used during the tests – this is found in all of the Viruskiller models.

The test results for particulate matter and VOC's vary between units as airflow and filters used alter these results, so they have been individually tested.

Opposite you will find the test results for respiratory viruses, you will see that each of the four viruses tested belong to one of the four main respiratory virus group types: we therefore can claim 99.9999% efficiency on ALL respiratory viruses.

Testing for viruses and bacteria is unregulated and we therefore strongly advise people to look at the cross section of pathogens tested, check the testing methods used and the institutes who conducted the tests.

Our full test reports are available on request.

ALL OF OUR PRODUCTS ARE OZONE FREE

Removal ability of various Bacilluses and Fungus

Kind and Classific	cation of Strain	Strain dosage	Detected amount of Strain (CFU)	Remarks		
	Experimental group 1	10 ⁶ /30ml	None detection (99.9999%)			
	Experimental group 2	106/30ml	None detection (99.9999%)	100		
S, aureus subsp. aureus KCTC 1928	Experimental group 3	10 ⁶ /30ml	None detection (99,9999%)			
KC1C 1928	Positive Control Group	10 ⁶ /30ml	256	7.1		
	Negative Control Group	0/30ml	None detection (99,9999%)			
	Experimental group 1	106/30ml	None detection (99,9999%)			
	Experimental group 2	10 ⁶ /30ml	None detection (99,9999%)			
S. pyogenes KCTC 3096	Experimental group 3	106/30ml	None detection (99.9999%)			
	Positive Control Group	106/30ml	290			
	Negative Control Group	0/30ml	None detection (99.9999%)			
	Experimental group 1	10 ⁶ /30ml	None detection (99,9999%)			
	Experimental group 2	106/30ml	None detection (99,9999%)			
S. pneumoniae KCTC 2241	Experimental group 3	106/30ml	None detection (99,9999%)			
5 m - 17	Positive Control Group	106/30ml	312			
	Negative Control Group	0/30ml	None detection (99.9999%)			
	Experimental group 1	106/30ml	None detection (99.9999%)	State of the State		
	Experimental group 2	10 ⁶ /30ml	None detection (99,9999%)	University and medica		
E. coli DH 5a	Experimental group 3	106/30mi	None detection (99.9999%)	research center test		
	Positive Control Group	106/30mi	275	results		
	Negative Control Group	0/30ml	None detection (99.9999%)	1 outilis		
	Experimental group 1	10 ⁶ /30ml	None detection (99,9999%)			
	Experimental group 2	10 ⁶ /30ml	None detection (99.9999%)			
K. pneumoniae KCTC 2241	Experimental group 3	10 ⁶ /30ml	None detection (99,9999%)			
	Positive Control Group	106/30ml	391			
	Negative Control Group	0/30ml	None detection (99.9999%)			
	Experimental group 1	103/30ml	None detection (99.9999%)			
	Experimental group 2	103/30ml	None detection (99.9999%)			
A. niger KCTC 6089	Experimental group 3	103/30ml	None detection (99.9999%)			
Maria Maria Araban Maria	Positive Control Group	103/30ml	much			
	Negative Control Group	0/30ml	None detection (99.9999%)			
	Experimental group 1	103/30ml	None detection (99,9999%)			
	Experimental group 2	103/30ml	None detection (99,9999%)			
R. oryzae KCTC 6062	Experimental group 3	10 ³ /30ml	None detection (99.9999%)			
	Positive Control Group	10 ³ /30ml	much	100		
	Negative Control Group	0/30ml	None detection (99,9999%)			

Removal ability of various harmful gas

Description	30 Minutes	60 Minutes	90 Minutes	120 Minutes	Remarks
Ammonia Gas	62%	71%	76%	79%	
Acetaldehyde.	91%	97%	98%	100%	
Acetic acid	100%	100%	100%	100%	International laboratory test results
Toluene	100%	100%	100%	100%	7 7 7 7
Formaldehyde	84%	93%	95%	95%	

The results speak for themselves and that is why Viruskiller is unparalleled air purification technology.

IMPORTANT

These test results were obtained using only our Sterilisation module without filters

If we say we can do it – we prove it!

The Viruskiller product range is the most tested air purification and sterilisation technology in the world.

Why is air purification AND air sterilisation important?

Air purification is important in order to catch larger particles, keeping the sterilisation chamber clear to work on the smaller pathogens such as viruses. We see air purification as the first half of the solution and air sterilisation as the second half of the solution.

NOTE: there are many claims about what filters can catch – there are no filters that can catch particles less than 0.13 micrometers in size, this means that there are no filters that can catch viruses.

What is the Viruskiller Difference?

A simple UV lamp on its own is classed as an air steriliser and when placed in a small enclosure and tested over time – it will give good test results. However in a clinical situation the air suspension time in close proximity to that UV lamp will not be enough to inactivate the majority of the airborne pathogens within the space it is covering.

The Viruskiller technology is based around the worlds most intelligent air sterilisation chamber, designed to have the highest possible kill rate with one air exchange in order to truly eradicate airborne pathogens within the space it is serving.

We welcome any technology comparisons and love to talk about our technology so please fell free to ask questions.

Reissuance (R1)

Date: 2016.08.09

TEST REPORT

1. No : CT16-087283

2. Client

O Name : INB air Co., Ltd.

O Address: 402, 15, Beotkkot-ro 12-gil, Geumoheon-gu, Seoul, Korea

3. Date of Test : 2016.07.29 ~ 2016.08.09

4. Use of Report :

5. Test Sample: VK-002

6. Test Method

(1) SPS-KACA002-132:2016

7. Test Results

1) VK-002

Test Item(s)	Unit	Test method	Test Results	Remark	
Noxious Gas Removal Ratio(Nitrogen Dioxide, NO ₂	5	(1)	More than 99.5	(21 ± 1) °C (45 ± 5) % R.H.	

Test Mode : FAN3(Rated Air Flow Rate)

End of Report ----

Affirmation

Tested By

Technical Manager

Our report apply only to the standards or procedures identified and to the sample(s) tested unless otherwise specified. The test results are not roducte.

2016.08.09

Korea Conformity Laboratories President Kyung Sik K

Address : 08503 199, Gasan digital 1-ro, Geumoheon-gu, Seoul, Korea 82-2-2102-2500

Result Inquiry : Electric & Electronic Team 82-2-2102-2719

QP-20-01-07(4)

Please check the specification chart on the first page of this document for the individual test results such as the one opposite. If copies of these are required please be specific for which model and which test and we will provide them.

Please enquire about our conformity certification. All of our products are KCC and CE certified. we are also going through UL certification **during 2017.**

We adhere to the highest electrical safety standards and tailor units dependent on the geographical locations electricity requirements

EC Declaration of Conformity According to EC EMC Directive 2014/30/EU

: INBair Co., Ltd

Applicant's Address : 15 Beotkkot-ro 12-gil, Geumcheon-gu, Seoul, Korea

Manufacturer's Name : INBair Co., Ltd

Manufacturer's Address : 15 Beotkkot-ro 12-gil, Geumcheon-gu, Seoul, Korea

Declares that the product.

Air Purifier Product Name Base Model : HEXTIO Variant Model

To which this declaration relates is in conformity with the following standard(s) or other normative document(s);

EN 55014-1:2006/A2:2011

EN 55014-2:2015

EN 61000-3-2:2014

EN 61000-3-3:2013

Electromagnetic compatibility -

Requirements for household appliances, electric tools and

similar apparatus - Part 1: Emission Electromagnetic compatibility -

Requirements for household appliances, electric tools and similar apparatus - Part 2: Immunity

Electromagnetic compatibility (EMC) - Part 3-2: Limits -Limits for harmonic current emissions (equipment input current <= 16 A per phase)

Electromagnetic compatibility (EMC) - Part 3-3: Limits -

Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current = 16 A per phase and not

following the provisions of Directive(s);

Council Directive on the approximation of laws of the Member States relating to electromagnetic compatibility (OJ L13923.5.89); amended by Directives, 92/31/EEC (OJ L126 12.5.92) and 93/68/EEC(OJ L220

Korea / 05, 10, 2017

(Place and date of issue)

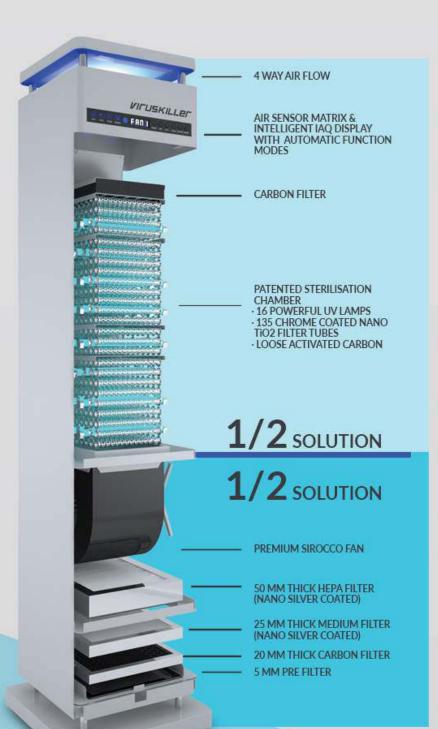
(name and signature or equivalent making of authorized person) European Contact (for regulatory topics only):

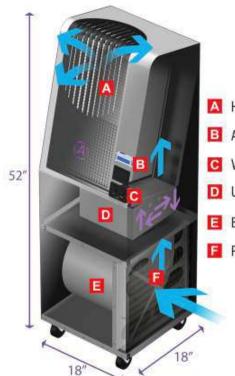
www.Radic8.com

VIRUSKILLER Competitive Analysis

As of 28th of May, 2017

	RADIC8 VIRUSKILLER				Germinator	Airbiotix	Airinspace	Sanitaire
Product Specifications	VK-MEDI	VK-102	VK-002	VK-blue	G400	T1	T2006	RSCS 280
Cost	\$5100	\$2900	\$2200	\$1300	\$3,750	\$6,000	\$11,000	\$3150
Unit Dimensions	H62.6" W20" D15.7"	H62" W12.6" D12.6"	H48" W12.6" D12.6"	H15" W25.2" D6.5"	H37" W15" D12"	H72" W36" D24"	H76.8" W36" D12.8"	H46" W22" D9"
Weight	119 lbs	88 lbs	75 lbs	16.5 lbs	52 lbs	130 lbs	407 lbs	44 lbs
Medical Casters	4 Casters+2 Adjust	2 Casters+2 Adjust	2 Casters+2 Adjust	Wall Mounting	5 - Center Mount	4 - FlushMount	4 - FlushMount	Ceiling Mounting
Delivered Air Flow	300 ~ 635 CFM	220 ~ 388 CFM	150 ~ 317 CFM	70 ~ 141 CFM	220~407 CFM	450 CFM	600 CFM	210 CFM
20'x20'x10' Room Space	4000 cu. Ft	4000 cu. Ft	4000 cu. Ft	4000 cu. Ft	4000 cu. Ft	4000 cu. Ft	4000 cu. Ft	4000 cu. Ft
20'x20'x10' Room Air Exchange	6 Minutes	10 Minites	13 Minutes	28 Minutes	10 Minutes	13 Minutes	7 Minutes	19 Minutes
Noize Level	40~54.5dB	40~47.7dB	40~46.5dB	40~46.1dB	40~46dB	40~46dB	40~46dB	40~46dB
Voltage Supply	220/110 volts	220/110 volts	220/110 volts	220/110 volts	110 volts	110 volts	220 volts	110 volts
Power Rating	180 ~ 280 W	180 ~ 350 W	180 ~ 280 W	50 ~ 95 W	60~150 W	80 ~150 W	200 ~250 W	153 W
Pre Filter	HEPA+Meduim	HEPA+Meduim	HEPA+Meduim	HEPA	HEPA	Synthetic Substrate	N-Thermal Plasma	Electronic Filter
UV Fiiltration	8ea, 16 watt UV	16ea, 6 watt UV	8ea, 6 watt UV	8ea, 6 watt UV	3ea, 16 watt UV	4ea, 8 Watt UV(Crystals)	None	4ea, 11 Watt UV
Total UV Germical Wattage	128 Watts UV	96 Watts UV	48 Watts UV	48 Watts UV	48 Watts UV	32 Watts UV	None	44 Watt UV
UVC Reflector	Galvanize Reflector	Aluminium Reflector	Aluminium Reflector	Chrome Coated Mirror	None	Metal Reflection	N/A	Aluminium Reflector
Photocatalytic Filters	70	135	70	40	None	Quartz Filters	N/A	None
Post Filter (After UV)	Activated Carbon	Activated Carbon	Activated Carbon	Activated Carbon	Activated Carbon	HEPA	Electronic Charge	None
Air Quality Sensors and Display	Standard	Standard	Standard	None	None	None	None	None
Automatic / Intelligent air quality functions	Standard	Standard	Standard	None	None	None	None	None
Activated Carbon Filtration	Honeycomb	Honeycomb	Honeycomb	Standard	Standard	None	None	None

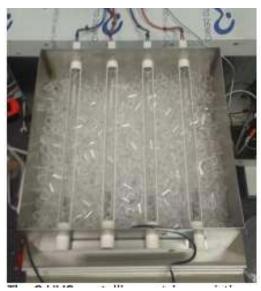

Note: This competitor analysis has been made to the best of our abilities using currently available marketing material


THE KEY to effective air sterilisation is to sterilize as much air in one air exchange as possible. The Viruskiller range is the most tested range of air sterilisers on the market and carries the highest test reports in comparison to competitors.

Have a look at what is in the box:

RADIC8 VK 102

\$2900



Aerobiotix T1 - \$6000

- A HEPA FILTER
- B AIR QUALITY MONITOR*
- VARIABLE SPEED CONTROL
- D ULTRAVIOLET REACTOR
- BLOWER/MOTOR
- F PREFILTER

Srterilisation Chamber of the Aerobiotix T1

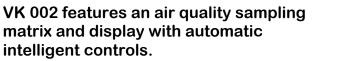
This image clearly shows the difference in build quality, internal components and most importantly the sterilisation chambers

The Aerobiotix T1 is more than double the retail price of the Radic8 VK 102

Contains:

Pre Filter
Hepa Filter
Activated Carbon Filters
8 x Ultraviolet Lamps
40 x Chromed TiO2 Filters

Radic8 VK Blue - \$1300



This image clearly shows the difference in build quality, internal components, functionality and most importantly the sterilisation chambers

The Sanitaire RSCS 280 is more than double the retail price of the Radic8 VK Blue

matrix and display with automatic intelligent controls.

Germinator G400 - \$3750

This image clearly shows the difference in build quality, internal components, functionality and most importantly the sterilisation chamber

The Sanitaire RSCS 280 has a much higher retail price than that of the Radic ? VK 002

Contains:

Pre Filter Hepa Filter Medium Filter Activated Carbon Filters 8 x Ultraviolet Lamps 70 x Chromed TiO2 Filters

Radic8 VK 002 - \$2200

In 2016 Radic8 teamed up with INBair and became two specialist air purification companies working together with one common goal: To Share Clean Air

Air pollution has become the earth's biggest environmental health threat and we have some of the world's leading technology to help protect people in indoor environments from this threat. In bringing you our technology – We Share Clean Air

THIS IS OUR MISSION

Every commercial installation of the Radic8 / INBair technology will benefit from the positive advertising of Sharing Clean Air, they will receive We Share Clean Air advertising materials and go onto the interactive We Share Clean Air database and map. www.WeShareCleanAir.com

We Understand that the comparisons may seem to good to be true:

Our mission is to share clean air and in the medical sector people are more in need of clean air than normal. We do not believe in increasing our prices for the medical sector and want to offer the most efficient and cost effective air purifiers + sterilisers around the world – in all sectors!

